.EX2 LDA INWK+31 \ Set bits 5 and 7 of the ship's byte #31 to denote that ORA #%10100000 \ the ship is exploding and has been killed STA INWK+31 RTS \ Return from the subroutine .DOEXP LDA INWK+31 \ If bit 6 of the ship's byte #31 is clear, then the AND #%01000000 \ ship is not already exploding so there is no existing BEQ P%+5 \ explosion cloud to remove, so skip the following \ instruction JSR PTCLS \ Call PTCLS to remove the existing cloud by drawing it \ again LDA INWK+6 \ Set T = z_lo STA T LDA INWK+7 \ Set A = z_hi, so (A T) = z CMP #32 \ If z_hi < 32, skip the next two instructions BCC P%+6 LDA #&FE \ Set A = 254 and jump to yy (this BNE is effectively a BNE yy \ JMP, as A is never zero) ASL T \ Shift (A T) left twice ROL A ASL T ROL A SEC \ And then shift A left once more, inserting a 1 into ROL A \ bit 0 \ Overall, the above multiplies A by 8 and makes sure it \ is at least 1, to leave a one-byte distance in A. We \ can use this as the distance for our cloud, to ensure \ that the explosion cloud is visible even for ships \ that blow up a long way away .yy STA Q \ Store the distance to the explosion in Q LDY #1 \ Fetch byte #1 of the ship line heap, which contains LDA (XX19),Y \ the cloud counter ADC #4 \ Add 4 to the cloud counter, so it ticks onwards every \ we redraw it BCS EX2 \ If the addition overflowed, jump up to EX2 to update \ the explosion flags and return from the subroutine STA (XX19),Y \ Store the updated cloud counter in byte #1 of the ship \ line heap JSR DVID4 \ Calculate the following: \ \ (P R) = 256 * A / Q \ = 256 * cloud counter / distance \ \ We are going to use this as our cloud size, so the \ further away the cloud, the smaller it is, and as the \ cloud counter ticks onward, the cloud expands LDA P \ Set A = P, so we now have: \ \ (A R) = 256 * cloud counter / distance CMP #&1C \ If A < 28, skip the next two instructions BCC P%+6 LDA #&FE \ Set A = 254 and skip the following (this BNE is BNE LABEL_1 \ effectively a JMP as A is never zero) ASL R \ Shift (A R) left three times to multiply by 8 ROL A ASL R ROL A ASL R ROL A \ Overall, the above multiplies (A R) by 8 to leave a \ one-byte cloud size in A, given by the following: \ \ A = 8 * cloud counter / distance .LABEL_1 DEY \ Decrement Y to 0 STA (XX19),Y \ Store the cloud size in byte #0 of the ship line heap LDA INWK+31 \ Clear bit 6 of the ship's byte #31 to denote that the AND #%10111111 \ explosion has not yet been drawn STA INWK+31 AND #%00001000 \ If bit 3 of the ship's byte #31 is clear, then nothing BEQ TT48 \ is being drawn on-screen for this ship anyway, so \ return from the subroutine (as TT48 contains an RTS) LDY #2 \ Otherwise it's time to draw an explosion cloud, so LDA (XX19),Y \ fetch byte #2 of the ship line heap into Y, which we TAY \ set to the explosion count for this ship (i.e. the \ number of vertices used as origins for explosion \ clouds) \ \ The explosion count is stored as 4 * n + 6, where n is \ the number of vertices, so the following loop copies \ the coordinates of the first n vertices from the heap \ at XX3, which is where we stored all the visible \ vertex coordinates in part 8 of the LL9 routine, and \ sticks them in the ship line heap pointed to by XX19, \ starting at byte #7 (so it leaves the first 6 bytes of \ the ship line heap alone) .EXL1 LDA XX3-7,Y \ Copy byte Y-7 from the XX3 heap, into the Y-th byte of STA (XX19),Y \ the ship line heap DEY \ Decrement the loop counter CPY #6 \ Keep copying vertex coordinates into the ship line BNE EXL1 \ heap until Y = 6 (which will copy n vertices, where n \ is the number of vertices we should be exploding) LDA INWK+31 \ Set bit 6 of the ship's byte #31 to denote that the ORA #%01000000 \ explosion has been drawn (as it's about to be) STA INWK+31 .PTCLS \ This part of the routine actually draws the explosion \ cloud LDY #0 \ Fetch byte #0 of the ship line heap, which contains LDA (XX19),Y \ the cloud size we stored above, and store it in Q STA Q INY \ Increment the index in Y to point to byte #1 LDA (XX19),Y \ Fetch byte #1 of the ship line heap, which contains \ the cloud counter. We are now going to process this \ into the number of particles in each vertex's cloud BPL P%+4 \ If the cloud counter < 128, then we are in the first \ half of the cloud's existence, so skip the next \ instruction EOR #&FF \ Flip the value of A so that in the second half of the \ cloud's existence, A counts down instead of up LSR A \ Divide A by 16 so that is has a maximum value of 7 LSR A LSR A LSR A ORA #1 \ Make sure A is at least 1 and store it in U, to STA U \ give us the number of particles in the explosion for \ each vertex INY \ Increment the index in Y to point to byte #2 LDA (XX19),Y \ Fetch byte #2 of the ship line heap, which contains STA TGT \ the explosion count for this ship (i.e. the number of \ vertices used as origins for explosion clouds) and \ store it in TGT LDA RAND+1 \ Fetch the current random number seed in RAND+1 and PHA \ store it on the stack, so we can re-randomise the \ seeds when we are done LDY #6 \ Set Y = 6 to point to the byte before the first vertex \ coordinate we stored on the ship line heap above (we \ increment it below so it points to the first vertex) .EXL5 LDX #3 \ We are about to fetch a pair of coordinates from the \ ship line heap, so set a counter in X for 4 bytes .EXL3 INY \ Increment the index in Y so it points to the next byte \ from the coordinate we are copying LDA (XX19),Y \ Copy the Y-th byte from the ship line heap to the X-th STA K3,X \ byte of K3 DEX \ Decrement the X index BPL EXL3 \ Loop back to EXL3 until we have copied all four bytes \ The above loop copies the vertex coordinates from the \ ship line heap to K3, reversing them as we go, so it \ sets the following: \ \ K3+3 = x_lo \ K3+2 = x_hi \ K3+1 = y_lo \ K3+0 = y_hi STY CNT \ Set CNT to the index that points to the next vertex on \ the ship line heap LDY #2 \ Set Y = 2, which we will use to point to bytes #3 to \ #6, after incrementing it \ This next loop copies bytes #3 to #6 from the ship \ line heap into the four random number seeds in RAND to \ RAND+3, EOR'ing them with the vertex index so they are \ different for every vertex. This enables us to \ generate random numbers for drawing each vertex that \ are random but repeatable, which we need when we \ redraw the cloud to remove it \ \ Note that we haven't actually set the values of bytes \ #3 to #6 in the ship line heap, so we have no idea \ what they are, we just use what's already there. But \ the fact that those bytes are stored for this ship \ means we can repeat the random generation of the \ cloud, which is the important bit .EXL2 INY \ Increment the index in Y so it points to the next \ random number seed to copy LDA (XX19),Y \ Fetch the Y-th byte from the ship line heap EOR CNT \ EOR with the vertex index, so the seeds are different \ for each vertex STA &FFFD,Y \ Y is going from 3 to 6, so this stores the four bytes \ in memory locations &00, &01, &02 and &03, which are \ the memory locations of RAND through RAND+3 CPY #6 \ Loop back to EXL2 until Y = 6, which means we have BNE EXL2 \ copied four bytes LDY U \ Set Y to the number of particles in the explosion for \ each vertex, which we stored in U above. We will now \ use this as a loop counter to iterate through all the \ particles in the explosion .EXL4 JSR DORND2 \ Set ZZ to a random number, making sure the C flag STA ZZ \ doesn't affect the outcome LDA K3+1 \ Set (A R) = (y_hi y_lo) STA R \ = y LDA K3 JSR EXS1 \ Set (A X) = (A R) +/- random * cloud size \ = y +/- random * cloud size BNE EX11 \ If A is non-zero, the particle is off-screen as the \ coordinate is bigger than 255), so jump to EX11 to do \ the next particle CPX #2*Y-1 \ If X > the y-coordinate of the bottom of the screen, BCS EX11 \ the particle is off the bottom of the screen, so jump \ to EX11 to do the next particle \ Otherwise X contains a random y-coordinate within the \ cloud STX Y1 \ Set Y1 = our random y-coordinate within the cloud LDA K3+3 \ Set (A R) = (x_hi x_lo) STA R LDA K3+2 JSR EXS1 \ Set (A X) = (A R) +/- random * cloud size \ = x +/- random * cloud size BNE EX4 \ If A is non-zero, the particle is off-screen as the \ coordinate is bigger than 255), so jump to EX11 to do \ the next particle \ Otherwise X contains a random x-coordinate within the \ cloud LDA Y1 \ Set A = our random y-coordinate within the cloud JSR PIXEL \ Draw a point at screen coordinate (X, A) with the \ point size determined by the distance in ZZ .EX4 DEY \ Decrement the loop counter for the next particle BPL EXL4 \ Loop back to EXL4 until we have done all the particles \ in the cloud LDY CNT \ Set Y to the index that points to the next vertex on \ the ship line heap CPY TGT \ If Y < TGT, which we set to the explosion count for BCC EXL5 \ this ship (i.e. the number of vertices used as origins \ for explosion clouds), loop back to EXL5 to do a cloud \ for the next vertex PLA \ Restore the current random number seed to RAND+1 that STA RAND+1 \ we stored at the start of the routine LDA K%+6 \ Store the z_lo coordinate for the planet (which will STA RAND+3 \ be pretty random) in the RAND+3 seed RTS \ Return from the subroutine .EX11 JSR DORND2 \ Set A and X to random numbers, making sure the C flag \ doesn't affect the outcome JMP EX4 \ We just skipped a particle, so jump up to EX4 to do \ the next one .EXS1 \ This routine calculates the following: \ \ (A X) = (A R) +/- random * cloud size \ \ returning with the flags set for the high byte in A STA S \ Store A in S so we can use it later JSR DORND2 \ Set A and X to random numbers, making sure the C flag \ doesn't affect the outcome ROL A \ Set A = A * 2 BCS EX5 \ If bit 7 of A was set (50% chance), jump to EX5 JSR FMLTU \ Set A = A * Q / 256 \ = random << 1 * projected cloud size / 256 ADC R \ Set (A X) = (S R) + A TAX \ = (S R) + random * projected cloud size \ \ where S contains the argument A, starting with the low \ bytes LDA S \ And then the high bytes ADC #0 RTS \ Return from the subroutine .EX5 JSR FMLTU \ Set T = A * Q / 256 STA T \ = random << 1 * projected cloud size / 256 LDA R \ Set (A X) = (S R) - T SBC T \ TAX \ where S contains the argument A, starting with the low \ bytes LDA S \ And then the high bytes SBC #0 RTS \ Return from the subroutineName: DOEXP [Show more] Type: Subroutine Category: Drawing ships Summary: Draw an exploding ship Deep dive: Drawing explosion clouds Generating random numbersContext: See this subroutine in context in the source code Variations: See code variations for this subroutine in the different versions References: This subroutine is called as follows: * LL9 (Part 1 of 12) calls DOEXP * LL9 (Part 9 of 12) calls DOEXP

[X]

Entry point DORND2 in subroutine DORND (category: Utility routines)

Make sure the C flag doesn't affect the outcome

[X]

Subroutine DVID4 (category: Maths (Arithmetic))

Calculate (P R) = 256 * A / Q

[X]

Label EX11 is local to this routine

[X]

Label EX2 is local to this routine

[X]

Label EX4 is local to this routine

[X]

Label EX5 is local to this routine

[X]

Label EXL1 is local to this routine

[X]

Label EXL2 is local to this routine

[X]

Label EXL3 is local to this routine

[X]

Label EXL4 is local to this routine

[X]

Label EXL5 is local to this routine

[X]

Label EXS1 is local to this routine

[X]

Subroutine FMLTU (category: Maths (Arithmetic))

Calculate A = A * Q / 256

[X]

Workspace K% (category: Workspaces)

Ship data blocks and ship line heaps

[X]

Label LABEL_1 is local to this routine

[X]

Subroutine PIXEL (category: Drawing pixels)

Draw a 1-pixel dot, 2-pixel dash or 4-pixel square

[X]

Label PTCLS is local to this routine

[X]

Entry point TT48 in subroutine ex (category: Text)

Contains an RTS

[X]

Workspace XX3 (category: Workspaces)

Temporary storage space for complex calculations

[X]

Configuration variable: Y = 96

The centre y-coordinate of the 256 x 192 space view

[X]

Label yy is local to this routine